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Field Equations on SE(k)-Manifold X. 
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An Einstein connection which is both a special connection and a (k)-connection 
is called an SE(k)-connection. And a generalized even-dimensional Riemannian 
manifold X,, with the so-called "SE(k)-condition" defined by the SE(k)-connec- 
tion is called the SE(k)-manifold. We obtain the necessary and sufficient condi- 
tion that there is a unique SE(k)-connection in X~. Next, using these results, we 
define the SE(k)-manifold and study the properties of the curvature tensors and 
the field equations in the SE(k)-manifold X,, 

1. INTRODUCTION 

In Appendix II to his last book Einstein (1950) proposed a new unified 
field theory that would include both gravitation and electromagnetism. 
Although the intent of this theory is physical, its exposition is mainly geomet- 
rical. It may be characterized as a set of geometrical postulates for the space- 
time X4. Although the geometrical consequences of the, se postulates were 
not developed very far by Einstein, Hlavat) (1957) gave its mathematical 
foundation for the first time, characterizing Einstein's unified field theory as 
a set of geometrical postulates for X4. Since then the geometrical consequen- 
ces of these postulates have been developed very far by a number of mathe- 
maticians and physicists; among them Hlavat~'s contributions are the most 
distinguished. 

Generalizing X4 to an n-dimensional generalized Riemannian manifold 
X,,, Wrede (1958) studied principles A and B of Einstein's unified field theory 
for the first time. But his solution of Einstein's equations is not surveyable, 
probably due to the complexity of the higher dimensions. 

The first purpose of the present paper is to introduce the new concept 
of even-dimensional SE(k)-manifold Xn imposing the so-called "SE(K)-con- 
dition" on X,, and to find a unique representation of Einstein's connection 
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on the SE(k)-manifold X,  in a simple and surveyable tensorial form. The 
second purpose is to study the properties of the curvature tensors and the 
field equations in the SE(k)-manifold Xn. 

2. PRELIMINARIES 

This section is a brief collecion of basic concepts, results, and notations 
needed in subsequent considerations. 

Let Xn, where n is even, be a generalized n-dimensional Riemannian 
space referred to a real coordinate system Z ~, which admits only coordinate 
transformations 2 ~ --, ~ for which 

Det(~3)(/~ 0 (2.1) 
\0X! 

where, here and in the sequel, Latin indices take the values 1, 2 , . . . ,  n, and 
follow the summation convention. 

The space X, is endowed with a general real nonsymmetric tensor gij 
which may be split into a symmetric part h U and a skew-symmetric part k U : 

gij = hij + k;j (2.2) 

where we assume that 

Remark 2.1. 
defined by 

G = Det(&j) # 0  (2.3a) 

H =  Det(hij) # 0 (2.3b) 

K =  Det(k,j) 5 0  (2.3c) 

(a) According to (2.3b), there is a unique tensor hik=h ki 

hijh ik =fif (2.4) 

The tensors hij and h ik will serve for raising and/or  lowering indices of 
tensors in Xn in the usual manner. 

(b) According to (2.3a), there is a unique tensor 

.gik _ ~ In G 
(2.5) 

~3gik 

satisfying the condition 

~ g i k  ~_. or.. " k 
g i j  e ,  oJ '  ,gk,= fi} (2.6) 
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Similarly, there is a unique tensor *k ik= *k {ik] such that 

kij *k ek = kj,. *k ki-= c~ k (2.7) 

The space X,, is assumed to be connected by a general real connection 
F~ with the following transformation rule: 

,j (2.8) 

It may be also decomposed into a symmetric part A~ and a skew-symmetric 
part &.jk called the torsion tensor of F~, 

Fk _ ak + .~ k (2.9) 
i j  - -  �9 ~ i j  ~ i j  

Definition 2.2. A connection F~ is said to be special if its symmetric 
part A~ coincides with the Christoffel symbol {i~} defined by hi j" that is, 

r~  = {/j} + Sir (2.10) 

Definition 2.3. A connection F~ is said to be a semisymmetric k-connec- 
tion, or briefly (k)-connection, if its torsion tensor Su k is of the form 

S,[ = 2 arYX; 1 + ku yk (2.11) 

for some vectors X~ and Y~. 

Definition 2.4. A connection F~. is said to be Einstein if it satisfies the 
following Einstein equations: 

m m _ Oh gij -- g,,yF~k - gimFkj -- 0 (2.12a) 

or equivalently 

Dk gij = 2Sk f~gi,~ (2.12b) 

where Dk is the symbolic vector of the covariant derivative with respect 
to F~. 

Hlavat~ (1957) proved the following theorem: 

Theorem 2.5. If equations (2.12) admit a solution F,~., then this solution 
must be of the form 

V~= {,4} + U~+S,J  k (2.13) 

where 

u k  _ , ~ a k - v  "'v (2 .14)  i j - -  z~t~ ~'Ja(i r ~ j ) m  
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In subsequent considerations we shall need the following scalars: 

a = G / H  (2.15a) 

fl= K / n  (2.15b) 

3. E(k)-CONNECTION AND S E ( k ) - C O N N E C T I O N  

In this section, we introduce the concepts of E(k)-connection and 
SE(k)-connection, and obtain the necessary and sufficient condition that 
there exists a unique SE(k)-connection in An. 

Definition 3.1. In An, a connection F~- is called an E(k)-connection if it 
is both Einstein and a (k)-connection. 

Theorem 3.2. If there is an E(k)-connection F~. in X,, then it must be 
of the form 

F k =  {kj} ..b2k(kyj)__2k(kkj)mym}_2~[kiYj]+kijyk (3.1) 

for some vectors X~ and Y~. 

Proof Suppose that there is an E(k)-connection F~ in An, then it is 
given by (2.13) and its torsion tensor S~ is given by (2.11) for some vectors 
X~ and Y,.. Substituting (2.11) into (2.14), we have 

U k = 2k(ikxj) _ 2k(ikkj)m ym (3.2) 

Substituting (2.11) and (3.2) into (2.13), we have (3.1). 

Theorem 3.3. Suppose that in An, there is an E(k)-connection (3.1) for 
some vectors Xi and Y;. Then the E(k)-connection is special if and only if 
the vectors X~ and Y; are related by 

Y i = k i j Y  j (or equivalently Yj= *kuX i) (3.3) 

Proof In virtue of definition (2.2), the E(k)-connection (3.1) is special 
if and only if 

2k(ikXj) _ 2k(i~kj)m ym = 0 (3.4) 

If the vectors X~ and Yi are related by (3.3), then we have (3.4) and so 
the E(k)-connection (3.1) is special. Conversely, suppose that the E(k)- 
connection is special; then we have (3.4). Contracting for i and k, we have 

kf(X~ - kkm ym) = 0 

According to (2.3c), we have 

Xk-kkmYm=O 

which implies (3.3). 
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Definition 3.4. A connection F~- in Xn is called an SE(k)-connection if 
it is a special E(k)-connection. 

Theorem 3.5. If  there is an SE(k)-connection F~ in X, ,  then it must be 
of the form 

k k ri - +k i j r  k + 2~t~Xjl (3.5a) 

for some vectors Xi and Ye such that 

Xi=ki jY  j (3.5b) 

Proof Our assertion immediately follows from Theorems 3.2 and 3.3 
and Definition 3.4. 

Theorem 3.6. If  there is an SE(k)-connection F~ in X2, then it coincides 
with the Christoffel symbol {~j}. 

Proof Let F~ be an SE(k)-connection in X2; then it is of the form 
(3.5). Hence, its torsion tensor is given by 

Si~ = 26{~i kjl,, ym q_ kij Yk 

for some vector Yj. Now we can easily check S~/~ = 0; for instance, 

$121 = 5~k2m Y"  - 5~klm ym + k12 y1 = 0 

Consequently, we have F~= {/k/}. 

Agreement 3.7. In our further considerations in the present paper, we 
restrict ourselves to the case n >_ 4, that is, n = 4, 6, 8 . . . . .  

Lemma 3.8. There is an SE(k)-connection F~-in X, if and only if there 
is a vector X~ in X, such that 

Vkk U = 2hk~j  I - 2k~ti Y/1 (3.6) 

where X~= k U Y~ and Vk is the symbolic vector of the covariant derivative 
with respect to {~j}. 

Proof Suppose that F~/is an SE(k)-connection in X,, ; then it is of the 
form (3.5) and satisfies (2.12). Substituting (2.2) and (3.5) into (2.12a), we 
have (3.6). Conversely, suppose that in X, there is a vector X~ satisfying 
(3.6). With this vector Xi, define a connection F~ by (3.5). Then it is special 
and a (k)-connection. Since this connection satisfies (2.12a) in virtue of 
our assumption (3.6), it is Einstein. Therefore this connection is an SE(k)- 
connection. 
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Theorem 3.9. There is a unique SE(k)-connection (3.5) in X, if and 
only if the following condition, called the SE(k)-condition, is satisfied: 

2 
Vkkij = ~ (hk[i~ p] + kk[i *kj]P)Vqkp q (3.7) 

If this condition is satisfied, then 

Xi = 2 - ~  vkk~ (3.8) 

Proof Suppose that there is a unique SE(k)-connection (3.5) in X, ; 
then, in virtue of Lemma 3.8, there is a vector X,. such that (3.6). Multiplying 
by hjm on both sides of (3.6) and contracting for k and m, we have 

V~k? = (2 - n)X~ (3.9) 

equivalent to (3.8). Equation (3.7) results from the substitution of (3.8) into 
(3.6). Conversely, suppose that (3.7) is satisfied. Define two vectors X~ and 
Y,. by 

1 
Xi = 2 - n  V~ki~ and Yj = *kijX i 

Then the condition (3.7) implies the condition (3.6). Hence, in virtue of 
Lemma 3.8, we have an SE(k)-connection. Suppose that there exists another 
SE( k )-connection, 

F~= {,5} + 28[kLJ + k'J *9e, ~ =  * -' kijX (3.10a) 

Ri~Xt (3.10b) 

Applying the same method used to obtain (3.8), we have 

Xi = 2 ~  n V/eke k = Xi 

which contradicts the assumption (3.10b). This proves the uniqueness of the 
SE(k)-connection in An. 

Corollary 3.10. In the case mentioned in the previous theorem, we have 

r~--- {,4} + 2 1 _ ~  (28[~8~ + kij ,~k)  Vqkpq (3.11) 

Proof Our assertion immediately follows from (3.5) and (3.8). 



Field Equations on SE(k)-Manifold X~ 1349 

4. SE(k)-MANIFOLD X, 

This section is devoted to the study of the geometrical properties on the 
SE(k)-manifold defined by the SE(k)-connection F t .  

Definition 4. I. An SE(k)-manifold X~ is a generalized even-dimensional 
Riemannian space Xn in which the SE(k)-condition (3.7) is satisfied. 

Remark 4.2. In virtue of Theorem 3.9 and Definition 4.1, there always 
exists an SE(k)-connection F~ of the following form in the SE(k)- 
manifold 27, : 

F ~. = { [j} + 25[~Xjl + k U yk (4. I) 

where 

X. = ~ Vkk~, Yj = *kuX i (4.2) 
' 2 - n  

and the vectors Xi and Yi satisfy 

V k k i j  = 2h~tiX] ] - 2kkEi Yj~ (4.3) 

Theorem 4.3. In the SE(k)-manifold X.  the following relations hold: 

Xi yi = 0 (4.4a) 

SifXk=O (4.4b) 

S;[  YJ = 0 (4.4c) 

S~kk~ = 0 (4.4d) 

S~f * k / =  0 (4.4e) 

where SoP is the torsion tensor of the SE(k)-connection F~. 

Proof Since XiYi=k~jYJY ~ and ki] is skew-symmetric, we have 
(4.4a). Making use of  (2.11), (3.5b), and (4.4a), we have (4.4b)-(4.4e). 

Theorem 4.4. In the SE(k)-manifold X, ,  the torsion vector S~ ( =  Se~ k) 
has the following properties: 

Si = (2 - n)Xs (4.5) 
D~S~ --- VjS~ (4.6) 

Proof Putting j = k  in (2.11) and making use ,of (3.5b), we have 
(4.5). Making use of (4.4b) and (4.5), we have (4.6). 

Theorem 4.5. In the SE(k)-manifold X, ,  the torsio:n tensor Sef satisfies 
the following relation: 

S~jk = �89 (V~kkj + Vjk~k + Vkk U) (4.7) 
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Proof Making use of (4.3) and (2.11), we have 

Vikhj + Vjkik + Vhk~j = 2(hzhXj- hjkX~ + k U Yk) = 2Sijk 

Theorem 4.6. In the SE(k)-manifold Xn, the scalars a and fl, defined 
by (2.15a) and (2.15b), are constants. 

Proof Multiplying by *giJ, defined by (2.5), on both sides of  (2.12a) 
and making use of (2.5) and (2.6), we have 

0h In G -  Fmmk-- F~m = 0 (4.8) 

On the other hand, making use of (4.1) and the classical result 2{m"h} = 
0h In H, we have 

Fmk q" F kmm = 2{mink} = Ok In n (4.9) 

Substituting (4.9) into (4.8), we have 

0k In G -  0h In H =  0, or Oh In a = 0 

which proves that a is constant. Next, in virtue of (2.12b), we have 

Dkkij  = 2Sk[f' ge]m (4.10) 

Multiplying by *k ;j, defined by (2.7), on both sides of (4.10) and making 
use of (2.2), (2.7), and (4.4e), we have 

Oh In K -  2Fmh = 2Sh (4.1 la) 

or equivalently 

Oh In K -  Fmk - Fkmm = 0 (4.1 lb) 

Substituting (4.9) into (4.11b), we have 0kln/3=0, which proves that /3 is 
constant. 

Remark 4. 7. Hlavat~, (1957) also proved that the relation (4.4) and a = 
const on a manifold in which a special Einstein connection is connected. 

5. FIELD EQUATIONS IN SE(k)-MANIFOLD X~ 

By field equations we mean a set of partial differential equations for 
gu. This section is concerned with the geometry of the field equations in the 
SE(k )-manifold X. .  

Remark 5.1. Einstein's n-dimensional unified field theory is based on 
the following three principles as indicated by Hlavat~ (1957): 

Principle A. The algebraic structure is imposed on a generalized 
n-dimensional Riemannian space X~ by a general real tensor giy defined 
by (2.2). 
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Principle B. The differential geometrical structure on Xn is imposed by 
the tensor gij through the Einstein connection F i~ defined by a system of 
Einstein equations (2.12). 

Principle C. In order to obtain gij involved in the solution for F }  in 
(2.12), some conditions are imposed, which may be condensed to 

Si=O (5.1a) 

R[ijl = ~3tiZjl (5.1b) 

R(ij) = 0 (5.1 C) 

where Zj is an arbitrary vector, and R~j is the contracted curvature tensor 
defined by 

Rij = RmUm (5.2) 

and R'~,.jk is the curvature tensor of F~ defined by 
m - -  "~ m m p m p m 

R ijk -- Oj~" ik -- ~k F ij -~ F i kFp j - -  F i jFpk  (5.3) 

Remark 5.2. In virtue of Definition 4.1 and Remark 4.2, our SE(k)- 
manifold X, is based on the principles A and B. 

Theorem 5.3. The SE(k)-curvature tensor R'~;jk in the SE(k)-manifold 
X, is given by 

R % k =  I ~ j ~  + 5 7 ( V j X k -  V~X~) + 5y'(V~X~ + X~X~) 

- 5 ~ ( V # i  + X~Xj) + ki~(Vj Y "  - Yj rm _ Xj ym) 

- kgj(Vk ym _ Yk ym _ Xk ym) + (h,jXk -- h~kXj) ym 

+ 2kjk( Y~Y m + X , Y  m) (5.4) 

where HmUk is the curvature tensor defined by the Chfistoffel symbol {~}. 

Proof Substituting the relation (2.10) into (5.3), we have 
m _ _  n ..}_ m m p m , p m R ijk-  IT  ~jk VjSik VkSi j  "~- Sik Spj Sij  Spk ( 5 . 5 )  

Substituting (2.11) into (5.5) and making use of (4.2)-(4.4), we have (5.4). 

Theorem 5.4. The contracted SE(k)-curvature tensor R~j ( =  Rm~j,,,) in 
the SE(k)-manifold Xn is given by 

R o = H~j + 2VEjX, 1 + (2 - n) (VjX~ + X i X  j ) - kijV k y k  (5.6) 

where H U =/-Wijm. 

Proof Putting m = k in (5.4) and making use of (4.2), (4.3), and (4.4a), 
we have (5.6). 
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Therorem 5.5. The field equations (5.1b) and (5.1c) are equivalent to 

(4 - n) OfjXil - kij V~ Y~ = ~tiZsj (5.7a) 

Hij + (2 - n)(V(sX o +X~Xj) = 0 (5.7b) 

Proof From (5.6), we have 

Rizjl = (4 - n) 3pX~j - k i j  Vk  y k  (5.8a) 

R(ij) = H;j+ (2 - n)(V(jX o +XiXj) (5,8b) 

Comparing (5.1b) and (5.1c) and (5.8a) and (5.8b), we have (5.7a) 
and (5.7b). 

Theorem 5.6. The requirement (5. la) reduces the SE(k)-manifold X,  to 
a Riemannian manifold with H~j= 0, and k U might be identified with the 
tensor of the electromagnetic field. 

Proof In virtue of (4.5), the field equation (5. la) implies Xe = 0 and so, 
in virtue of (4.1), F ~ =  {i~}. Hence Rij=Hij, so that (5.1b) is automatically 
satisfied by Ze = ~Z, and (5.7b) reduces to H~j = 0. Hence the SE(k)-manifold 
X, is a Riemannian manifold with Hu=0 .  Furthermore, from (3.7) and 
(3.8), we have 

~[kkijl = 0 and V~k~ = 0 

Hence k;j may be identified with tensor of the electromagnetic field. 

Remark 5.7. Hlavat~, (1957) also proved that if 

Sij k= 3S[i~] (5.9) 

then the requirement (5.1 b) reduces space-time X4 to a Riemannian manifold 
)(4 with H U = 0. 

Remark 5.8. The requirement (5. la) is too strong in the field theory in 
our SE(k)-manifold X,.  If  we exclude the condition (5.1 a), or if we replace 
(5.1a) by another condition, then the integrability conditions of (5.7a) are 
given by 

Of,,,(kijl VkY k) = 0 (5.10) 
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